CARSIC INFILTRE
CARSIC DE SILICIUM INFILTRE
Propriétés essentielles
Applications
Ces valeurs sont données à titre indicatif et n’engagent pas la responsabilité de la société SCERAM.
Ces valeurs sont données à titre indicatif et n’engagent pas la responsabilité de la société SCERAM.
Le carbure de silicium (SiC) est l’une des céramiques techniques les plus employées avec l’alumine, la zircone yttriée et le nitrure de silicium. La production de carbure de silicium à l’échelle industrielle a commencé en 1893 quand E.G. Acheson a mis au point le procédé qui porte aujourd’hui son nom. Acheson voulait produire une substance abrasive en faisant réagir de l’argile avec du coke à haute température dans un four à arc électrique à électrodes en graphite. Pensant avec obtenu un corps composé de carbone et de corindon, il lui donne le nome de carborundum. On comprendra un peu plus tard que ce n’est pas l’alumine qui a réagi avec le carbone mais la silice…
Source : Les céramiques industrielles, propriétés, mise en forme et applications – Auteurs : Gilbert Fantozzi, Jean-Claude Nièpce et Guillaume Bonnefont- Editions DUNOD.
Faible masse volumique
Bonne conductivité thermique
Bonne résistance aux chocs thermiques
Etanche aux liquides et aux gaz
Grande réfractaritée (utilisable à 1450°C ans l’air et à 1800°C en atmosphère neutre)
N’est pas corrodé et ne mouille pas aux alliages d’aluminium et de zinc fondus
Grande dureté
Faible coefficient de frottement
Résistance à l’abrasion
Résistance à la corrosion par les bases et acides forts
Apte au polissage
Résistance mécanique élevée
Garnitures mécaniques
Joints tournants
Paliers lisses, patins, coussinets
Composants de pompes
Industrie chimique
Miroirs
Protection balistique
Échange de chaleur
Ces valeurs sont données à titre indicatif et n’engagent pas la responsabilité de la société SCERAM.
L’alumine est l’oxyde le plus utilisé. Il cristallise sous différentes formes cristalines appelées alumines de transition, lorsque l’on chauffe les hydroxydes, généralement extraits du minérai de bauxite avant de former la forme haute température, recherchée pour les applications céramiques. En effet, les alumines de transition sont caractèrisées par une microporosité et une taille de cristallites souvent inférieur à 0,1 μm. Il en résulte une surface spécifique extrémement elevée qui fait de ces produits des matériaux de choix comme supports de catalyseurs ou comme absorbants, mais des poisons dans la fabrication de l’alumine α, lui conférant une surface spécifique apparente élevée et posant des problèmes lors du frittage.
Source : Les céramiques industrielles, propriétés, mise en forme et applications – Auteurs : Gilbert Fantozzi, Jean-Claude Nièpce et Guillaume Bonnefont- Editions DUNOD.
Propriétés essentielles
Grande dureté Résistance à l’abrasion Usinable avec de grandes précisions Apte au polissage Tenue aux températures élevées Porosité ouverte nulle Excellentes propriétés électriques Inertie chimique Résistance élevée à la corrosion
Composants mécaniques Pistons, paliers de pompes Garnitures mécaniques Bagues d’étanchéité Boisseaux et siège de vannes Isolateurs électriques Pièces électrotechniques Pyrométrie Articles de laboratoire Pièces pour le vide Buses de soudage
Alumine 99,7% / Silice 0,05% / Magnésie 0,03% / Oxyde de sodium 0,15% / Oxyde de fer 0,02% / Oxyde de calcium 0,03% / Oxyde de titane <0,01% / Oxyde de bore <0,2%
Ces valeurs sont données à titre indicatif et n’engagent pas la responsabilité de la société SCERAM.